Harvesting of legacy radium sources; experiences and approaches at BWXT Medical

Dr. Patrick Causey, Richard Decaire, RSO, May 30, 2024

Timeline of BWXT's presence in nuclear medicine

Medical

²²⁵Ac

Actinium-225 Chloride - Spallation Active Pharmaceutical Ingredient

- Actinium-225 Chloride is an active pharmaceutical ingredient for Ac-based radiopharmaceuticals.
- The radioisotope is manufactured following high-energy proton spallation of natural thorium metal to produce the parent isotope, radium-225, as the integral component in a radium generator.
- Ra-225 beta decays with a 15 day half-life, producing high quality final product.
- No detectable Ac-227, observed in other spallation processes for direct production of actinium-225.
- Planned Drug Master Filing

Type 1B Licence implications

Items that need addressing for Ra-226:

- Derived Release Limits for environmental protection –if you don't have published values
- Update to Preliminary Decommissioning Plan (and Financial Guarantee)

Other:

- Our licence permits us to "possess, transfer, use, process, import, manage, store or dispose of nuclear substances" including Ra-226
- CNSC reporting requirements specific to Ra-226 sources greater than 10 Ci (0.4 TBq):
 - 7 days before any transfer or export
 - 48 hours after receipt

Licence elements in this presentation

- Management,
- Training,
- Operations,
- Reporting,
- Safety Analysis,
- Design,
- Fitness,
- Radiation Protection,
- Health and Safety,
- Environmental Protection,
- Waste Management,
- Packaging/Transport and
- Security

Packaging and Transportation Solutions

Parts List

- 1. Wire seal
- 2. Lid
- 3. Hex screws
- 4. Shielded plug
- 5. O-ring
- 6. Lead shielding
- 7. Steel bolt
- 8. SS cylinder
- 9. Shipping container ID
- 10. Category label
- 11. Leak-proof insert
- 12. UN Number label
- 13. Gasket

- F-707 for Type 'A' quantities of radioisotopes (81 mg, 3 GBq Ra-226).
 - Approved
- F-458 for Type 'B' quantities of radioisotopes.
 - Currently in process of obtaining licence approvals
- Packages have the following components:
 - A receptacle (vial or bottle) containing the isotope.
 - A leakproof insert (e.g. F-248),
 - A shielding vessel,
 - Outer packaging, and
 - Tamper-proof seal

Canadian Regulatory Requirements for Import/Export of Radium-226

- BWXT's Kanata site is a Processing Facility which formerly manufactured radioiodines and radioxenons (Helpful experience for radon trapping and breathing air monitoring)
- Nuclear ventilation and process equipment used to locally control radon-222
- Cells are currently undergoing upgrading and commissioning activities
- All work is controlled through existing Safety and Radiation Protection Programs

²²⁶Ra

Radium-226 salt Radiochemical Precursor

- BWXT has developed a Process identifying key steps and decision points for the recovery of Ra-226 from legacy sources
- Acknowledges the diversity of source materials and is initially targeting brachytherapy sources
- Recognizing the significant lack of information that often accompanies these types of legacy radioactive sources
- Currently in Development space, all documentation are 'R-docs'
- Successfully and safely executed Proof of Concept radium harvesting from Category 2 sealed source in Kanata

Proof of Concept Harvesting

- BWXT had in our inventory mg-sized Ra-226 sealed source
- All work was controlled under our Work Permit program
- Work was executed in our radiological R&D lab
- Radiation field ~ 4 R/h near contact
- Successfully controlled Rn-222
- Analytical method are in the development phase
 - γ-spectroscopy
 - ICP-MS
 - α-spectroscopy
 - all methods will be qualified

Trapping of Rn-222 during sealed source processing

By interrupting the decay chain, legacy radioxenon traps were **<u>extremely effective</u>** in capturing radon!

Grow-in dose rates from Rn-222 extracted process gases were as modeled in MicroShield.

Shouldn't have been surprising, but it still felt that way...

Elapsed Time	Radiation Field Measurement (mR/h)
0	0.7
1	1392
2	2235
3	2467

Medic

- Developed Process Flow for receipt and handling of legacy radium sources
- Drafted SOPs for opening and isolation of Special Form Capsules and sealed radium sources from customers/partners
- Drafted SOPs for chemical processing of opened sources, a combination of EXC and IX
- Qualified analytical methods for ICP-MS, and γ -spectroscopy for ²²⁵Ac
- Preliminary material specifications

	R146.001.SPE (1)	Page 1 of 2
	Radiochemical Radium-226 Chloride	-
DUCT	: Radium-220 Chloride	
UFACTURER	: BWXT Medical Ltd	
IGET	: Radium-226 Chloride, [²³ Ra]RaCl ₂	
F-LIFE	: 1600 years	
MICAL FORM	: [²²⁸ Ra]RaCl ₂ , dried solid salt	
EARANCE	: White to off-white colour (by visual inspection), no resi	idual liquid
	: NA	
NONUCLIDE IDENTITY ¹	: Most prominent gamma photons energies at 198 ± 2 keV (Ra-228) and 351 ± 2 keV (Pb-214)	
IONUCLIDIC PURITY ^{1,2}	: Ra-226 > 99 % (including daughters)	
NOCHEMICAL PURITY	Ra-228 >6996 is present as ionic form <0.1% sulfates <0.1% bromides <0.1% carbonate Unspecified Others <1%	
CIFIC ACTIVITY(ICP/MS)	: No carrier added	
MICAL PURITY ⁴	sum of all metal impurities: < 10 ug /mg Ra-228	
ORIDE IDENTITY	: Positive (by chloride detection reaction)	
IVITY	: +/- 10 % of the label claim at Cal Date	
	: 12:00 ET, day of manufacture	
IBRATION DATE		

Implications of ICRP 68 vs. ICRP 137

Includes Summary of the Current ICRP Principles for Protection of the Patient in Nuclear Medicine

66

ICRP Publication 137

Occupational Intakes of Radionuclides: Part 3

13.4. Dosimetric data for radium

THE REPORT OF A TASK GROUP OF COMMITTEE 2

Table B.1 .- (continued)

		Effective dose coefficients (
		Inhalation, $e_{inh}(50)$			Ingestion	stion	
Nuclide	I1/2	Туре	f_1	}µmAMAD	5µmAMAD	f_1	$e_{ing}(50)$
Radium							
Ra-223	11.4d	м	0.200	6.9E-06	5.7E-06	0.200	1.0E-07
Ra-224	3.66d	м	0.200	2,9E-06	2.4E-06	0,200	6.5E-08
Ra-225	14.8d	м	0.200	5,82-06	4.8E-06	0.200	9.5E-08
Ra-226	1.60E+03y	м	0.200	1,62-05	1.28-05	0.200	2.8E-07
Ra-227	0.703h	м	0.200	2,8E-10	2.1E-10	0.200	8,4E-11
Ra-228	5.75y	м	0.200	2.6E-06	1.7E-06	0,200	6.7E-07

Table 13.7. Committed effective dose coefficients (Sv Bq^{-1}) for the inhalation or ingestion of ²²⁶Ra and ²²⁸Ra compounds.

- Inholad nonticulate motorials	Effective dose coefficients (Sv Bq ⁻¹)			
(5-μm AMAD aerosols)	²²⁶ Ra	²²⁸ Ra		
Type F, nitrate	1.6E-07	4.1E-07		
Type M, all unspecified forms	1.4E-06	1.2E-06		
Type S	1.3E-05	2.2E-05		
Ingested materials				
All forms	1.3E-07	3.4E-07		

AMAD, activity median aerodynamic diameter.

New ICRP series has a software viewer with IRF's, individualized chapters on elements and data on multiple isotopes

SR Electronic Annex / OIR Data Viewer

Dose per Content & Reference Bioassay Functions Dose per Intake

ICRP Publication 137

Table 13.8. Dose per activity content of 226 Ra in lungs and in daily excretion of urine and faeces (Sv Bq⁻¹); 5-µm activity median aerodynamic diameter aerosols inhaled by a reference worker at light work.

Time		Type F			Type M		_	Type S	
after intake	T	I.I.a'aa a	F	I	I.I. a'aa a	F	I	L	F
(a)	Lungs	Urine	Faeces	Lungs	Urine	Faeces	Lungs	Urine	Faeces
1	3.7E-04	5.2E-05	1.9E-06	2.8E-05	2.7E-03	1.6E-05	2.1E-04	5.2E-01	1.6E-04
2	6.6E-04	1.7E-04	6.5E-07	2.9E-05	7.4E-03	5.3E-06	2.2E-04	1.4E+00	4.9E-05
3	9.8E-04	3.1E-04	9.6E-07	3.0E-05	1.4E-02	8.0E-06	2.3E-04	2.7E + 00	7.5E-05
4	1.4E-03	4.7E-04	2.2E-06	3.1E-05	2.0E-02	2.0E-05	2.3E-04	3.9E+00	2.0E-04
5	1.9E-03	6.7E-04	5.4E-06	3.1E-05	2.8E-02	6.4E-05	2.3E-04	5.5E + 00	6.6E-04
6	2.6E-03	9.4E-04	1.1E-05	3.2E-05	3.8E-02	1.9E-04	2.4E-04	7.6E+00	2.3E-03
7	3.6E-03	1.3E-03	2.0E-05	3.3E-05	5.0E-02	4.3E-04	2.4E-04	1.0E + 01	6.6E-03
8	4.7E-03	1.8E-03	2.9E-05	3.3E-05	6.5E-02	7.1E-04	2.4E-04	1.4E + 01	1.3E-02
9	6.1E-03	2.5E-03	4.2E-05	3.4E-05	8.1E-02	9.8E-04	2.5E-04	1.8E + 01	1.8E-02
10	7.7E-03	3.4E-03	5.8E-05	3.4E-05	9.9E-02	1.2E-03	2.5E-04	2.2E+01	2.2E-02
15	1.5E-02	1.1E-02	2.3E-04	3.6E-05	1.8E-01	2.7E-03	2.5E-04	4.8E+01	4.7E-02
30	2.0E-02	2.5E-02	6.6E-04	4.0E-05	2.5E-01	5.0E-03	2.6E-04	7.0E+01	1.2E-01
45	2.1E-02	3.2E-02	8.7E-04	4.5E-05	2.8E-01	5.8E-03	2.7E-04	7.7E+01	1.3E-01
60	2.2E-02	4.2E-02	1.1E-03	4.9E-05	3.1E-01	6.5E-03	2.8E-04	8.3E+01	1.4E-01
90	2.4E-02	7.1E-02	1.9E-03	6.1E-05	3.9E-01	8.2E-03	3.0E-04	9.4E+01	1.5E-01
180	2.7E-02	3.2E-01	8.8E-03	1.1E-04	7.5E-01	1.6E-02	3.5E-04	1.2E + 02	2.0E-01
365	2.9E-02	2.1E+00	5.9E-02	3.6E-04	2.5E+00	5.6E-02	4.7E-04	1.7E + 02	3.5E-01

Bioassay Capabilities

ICRP Publication 137

Occupational Intakes of Radionuclides: Part 3

Table 13.4. In-vitro monitoring techniques for ²²⁶Ra.

Isotope	Monitoring technique	Method of measurement	Expedited detection limit [*]	Achievable detection limit [†]
²²⁶ Ra	Urine bioassay	α spectrometry	$0.2 \text{ Bq } \text{L}^{-1}$	
²²⁶ Ra	Urine bioassay	Emanation	$5 \mathrm{mBq}\mathrm{L}^{-1}$	$0.3 \mathrm{mBq}\mathrm{L}^{-1}$
²²⁶ Ra	Urine bioassay	Proportional counting	$4 \mathrm{mBq}\mathrm{L}^{-1}$	
²²⁶ Ra	Urine bioassay	Liquid scintillation counting	$3 \mathrm{mBq}\mathrm{L}^{-1}$	
²²⁶ Ra	Urine bioassay	ICP-MS	$1.72 \times 10^{-10} \text{mg L}^{-1\ddagger,\$}$	
²²⁶ Ra	Faeces bioassay	Proportional counter	$16 \text{ mBq } 24 \text{ h}^{-1}$	

ICP-MS, inductively coupled plasma mass spectrometry.

*Short preparation time (5–8 h), not used in routine.

[†]Several weeks preparation time (20–30 d).

^{*}2–3 d preparation time.

 $1.72 \times 10^{-10} \text{ mg L}^{-1} = 6.3 \text{ mBq L}^{-1}$.

[¶]Results were given in mg of ash and converted to mg d^{-1} by considering 4 g ash per daily faecal excretion.

Table 13.5. In-vivo monitoring techniques for ²²⁶Ra.

Isotope	Monitoring technique	Method of measurement	Typical detection limit	Achievable detection limit
²²⁶ Ra	Lung measurement	γ-ray spectrometry, in vivo	100 Bq	40 Bq

Experience at BWXT Medical

commercial offerings 10 mBq/L Urinalysis detection limit

Government offering 60 Bq - 1hr lung count detection limit 20 Bq - 8hr lung count detection limit

ICRP 137 implication of Bioassay Detection Limits

Fig. 13.2. Lung content and daily urinary and faecal excretion of ²²⁶Ra following inhalation of 1 Bq Type F. Fig. 13.3. Lung content and daily urinary and faecal excretion of ²²⁶Ra following inhalation of 1 Bq Type M.

Type F -24hr Faeces @0.02 mBq DL				
Day1	0.04 μSv (0.004 mrem)			
Day90	0.038 mSv (3.8 mrem)			
Type F – Lung @ 50 Bq DL				
Type F – Lun	g @ 50 Bq DL			
Type F – Lun Day1	g @ 50 Bq DL 18.52 mSv (1.852 rem)			

Type M -24hr Faeces @0.02 mBg DI				
Day1	0.3 μSV (0.03 mrem)			
Day90	0.167 mSv (16.71 mrem)			
Type M - Lung at 50 Bq DL				
Day1	1.39 mSv (139 mrem)			
Day90	3.13 mSv (313 mrem)			

Fig. 13.4. Lung content and daily urinary and faecal excretion of ^{226}Ra following inhalation of 1 Bq Type S.

Гуре S -24hr Faeces @0.02 mBq DL				
Day1	3 μSv	(0.3 mrem	ı)	
Day90	3.07 mS	Sv (307 mren	n)	
Гуре S - Lı	ing at 50 Bo	զ DL		
Day1	10.64 m	1 <mark>Sv (1064</mark> mr	em)	
Day90	14.71 m	1Sv (1471 mr	em) BW	
			Medica	

Bioassay at BWXT Medical

Startup:

- Baseline urine and lung counting
- Then routine bioassay with campaign based frequency
 ...Eventually expect to fall to a Special Bioassay Frequency

With more operating experience we expect to fall to a Special bioassay frequency ... based on operating experience from contamination testing, and use of newly purchased iCAMs (one with remote sampling head).

=

Image provided courtesy of Mirion Technologies ©2024

Single taped bags
 Eventually off-gassed
 Rn, bag added months
 later = airborne Rn
 progeny

- BWXT has a long and documented history as a global leader in Nuclear Medicine Manufacturing
- Offering Active Pharmaceutical Ingredients, sterile Drug Products, bulk radiochemicals, and custom services
- Products and services, including Ac-225 and Ra-226, fall under a recognized Quality Assurance Program
- Wide range of critical capabilities in areas of Licensing, Regulatory, Transportation, Logistics and Quality
- Existing unique facilities and highly qualified personnel to support and execute complex projects

Process Questions:

Patrick Causey, Technical Manager, Research and Development BWXT Medical Ltd. Mobile +1 343-548-2559 <u>pcausey@bwxt.com</u>

Radiation Safety Questions:

Richard DeCaire, Senior Manager, Radiation Safety BWXT Medical BWXT Medical Ltd. Mobile +1 613-867-0578 <u>rdecaire@bwxt.com</u>

Strategic Supply and Business Development

Mike Flagg, Director, Strategic Supply BWXT Medical BWXT Medical Ltd. Mobile +1 434-363-8484 <u>mflagg@bwxt.com</u>

